

ARGO

WCET-Aware Parallelization of Model-Based Applications

for Heterogeneous Parallel Systems

H2020-ICT-2015

Project Number: 688131

Deliverable D5.3

D5.3 End-user guidelines for model-based design

Editors: Clément David (Scilab)
Authors: Clément David (Scilab)

Timo Stripf (Emmtrix)
David Müller (DLR)
Umut Durak (DLR)
Marcus Bednara (IIS)
Koray Kasnakli (IIS)

Version: v1.00
Status: FINAL
Dissemination level: Public (PU)
Filename: D5.3 End-user guidelines for model-based design.docx

ARGO Consortium

Karlsruhe Institute of Technology DE
Scilab Enterprises FR
Recore Systems B.V. NL
Université de Rennes I FR
Technological Educational Institute of Western Greece GR
AbsInt Angewandte Informatik GmbH DE
Deutsches Zentrum für Luft- und Raumfahrt DE
Fraunhofer IIS DE
emmtrix Technologies GmbH DE

© Copyright 2017 by the ARGO Consortium

D5.3 End-user guidelines for model-based design ARGO

2

Version: v1.00 / FINAL Public (PU)

Document revision history

Version Based on Date Author Comments / Changes

V1.00 2017-07-17 Clément David Final Version

D5.3 End-user guidelines for model-based design ARGO

3

Version: v1.00 / FINAL Public (PU)

About this document

This document provides end-user guidelines for application development in the model-based
design environment. It accompanies the delivered implementations made by the software
providers and also provides an integrated overview of the toolset. This deliverable is the first
revision of the guidelines.

D5.3 End-user guidelines for model-based design ARGO

4

Version: v1.00 / FINAL Public (PU)

Table of Contents

Document revision history ... 2

About this document... 3

Table of Contents .. 4

List of Figures ... 5

List of Tables ... 6

1. Introduction .. 7

2. Overview of ARGO model-based design toolset .. 8

3. Scilab/Xcos: a model based design environment .. 9

3.1 Model design ..10

3.2 Model verification ...11

3.3 Software in the loop (SIL) ...12

4. Development iterations ...14

4.1 End-user application initial validation ..14

4.1.1 Scilab-based models validation ...14

4.1.2 Xcos-based model validation ...15

4.2 Software in the Loop validation ..16

4.2.1 Xcos to Scilab ...16

4.2.2 Scilab to sequential C..18

5. Conclusion ...21

Glossary of Terms ..22

References ..25

D5.3 End-user guidelines for model-based design ARGO

5

Version: v1.00 / FINAL Public (PU)

List of Figures

Figure 1: ARGO tool flow ... 8

Figure 2: Xcos model .. 9

Figure 3: Scilab code as configuration ... 9

Figure 4: subsystem with a trash block ...11

Figure 5: Scilab translated code ...11

Figure 6: Scilab to C frontend warning for dummy assignment ...11

Figure 7: ARGO tools in the loop ..12

Figure 8: Scilab function re-definition ..14

Figure 9: Xcos model for validation ..15

Figure 10: Xcos model test ...16

Figure 11: Xcos frontend input model for SIL ..17

Figure 12: Xcos frontend output for SIL ..17

Figure 13: Scilab frontend input for SIL ..19

Figure 14: Scilab frontend output for SIL ..19

D5.3 End-user guidelines for model-based design ARGO

6

Version: v1.00 / FINAL Public (PU)

List of Tables

No table of figures entries found.

D5.3 End-user guidelines for model-based design ARGO

7

Version: v1.00 / FINAL Public (PU)

1. Introduction

Models or applied maths on controls need arise at the end of the 20th century due to some
challenges emergence:

1. How to control in safer ways critical infrastructures like nuclear plants?
2. How to ensure by design that suppliers will comply with specifications?
3. How to split a system and distribute the realisation of parts.

All these questions can be answered by providing a mathematical model backed by
dedicated software called a “Model-based environment”. There are multiple mathematical
representations as well as multiple environments available depending on users’ concerns. In
our use-cases, the selected model-based environment is called Scilab/Xcos1 and implements
both a scripting language and a graphical dynamic systems modeler.

The two use-cases represents the industry usage on implementing advanced controls
software in two different ways. The Fraunhofer IIS POLKA use-case focus on the easy to
use, matrix-based Scilab scripting language to implement image transformation algorithms,
whereas the DLR GPWS use-case rely on sub-systems decomposition and control system
semantics of Xcos to implement an aeronautic altitude alert system.

D5.3 End-user guidelines for model-based design ARGO

8

Version: v1.00 / FINAL Public (PU)

2. Overview of ARGO model-based design toolset

Figure 1: ARGO tool flow

In this document, the upper layer of ARGO tool flow will be detailed. The focus will be on
user-visible toolset, how to edit the input model to feed the entire ARGO flow, get information
back after a first iteration and specialize the input model to better fit the selected multi-core
architecture.

D5.3 End-user guidelines for model-based design ARGO

9

Version: v1.00 / FINAL Public (PU)

3. Scilab/Xcos: a model based design environment

Scilab/Xcos is a generic environment that includes hundreds of mathematical functions. It
has a high-level programming language allowing access to advanced data structures, 2-D
and 3-D graphical functions. In the context of the ARGO project, the Scilab/Xcos define on
high-level implementation, a model, validated on the design phase thanks to the dynamic
evaluation of the Scilab language and the Xcos system modelling.

steptime = 0.01 // 1.0E-02

//constants

convert_unit = 3.28084 //m to ft conversion

r_satmax=[10]

r_satmin=[-10];

scheduling_state=1

controlled_state=2

//Inputs

r_test=10

y_test=[10,9,10,9,9,9]

//gain schedule

x1=[-50, 0, 50] //state

y1=[1.12,0.40,2.45] //gain

Figure 3: Scilab code as configuration

Figure 2: Xcos model

D5.3 End-user guidelines for model-based design ARGO

10

Version: v1.00 / FINAL Public (PU)

The high-level model could be defined using Scilab language with limited function-set, Xcos
modelling with limited block-set or a mix of both as in Figure 2: Xcos model and Figure 3:
Scilab code as configuration. The combination of having a scripting language to implement
blocks as well as to parametrize a system definition is a key-requirement for the end-users.
This will allow a unique way to match specific multicore architectures constraints by tuning
and validating the model in a high-level toolset.

The software tools currently available are using Scilab 5.5.2 feature sets and require this
exact version in the development machine. To be able to run the generated C code, a C
compiler is also required.

3.1 Model design

Scilab is a matrix-based language offering native datatypes to solve mathematical, scientific,
engineering problems. Xcos is graphical editor and simulator with precise semantics for
computation-oriented design. Quick start guides2 are available and provide a fast way to
understand the language and its features.

Using Scilab, you can design a model by using the native datatypes provided and construct
your own data models based on these native ones. The toolset has a support for most of the
Scilab datatypes for building algorithms especially:

 Extended matrix support (scalar, vector, matrices and hypermatrix)

 struct() with named indexing

 Integers, float, double, string values

A detailed list of the supported functions with supported features and limitations is also
available within the toolset3. Users should refer to this documentation to analyse if the subset
used in its model is covered by the flow. The Scilab frontend has however been designed to
be easily extendable by user-defined functions to cover the missing parts or implement stub
used on validation.

Using Xcos, you can design a model by using the native functional blocks and define sub-
systems by composition. The visual aspect can also be setup to add non-functional
documentation and requirements. The toolset supports a subset of blocks as well as a
subset of the modelling semantics; the available subset covers:

 Constant, mathematical and discrete blocks

 Scilab user-defined blocks

 Single or multi-synchronous event triggered subsystem

An initial list of supported blocks is shipped within the toolset and, as for the Scilab frontend,
user-defined blocks can be implemented to add more features. Due to the WCET
computation constraints and model real-time execution, the Xcos frontend only covers mono-
clocked (or synchronized multi-clocked) blocks.

To facilitate the initial design of the model, a lot of books describing Scilab usage per
scientific or engineering domains are already available. For example, the user can read
books covering the whole Scilab software4, practical problem solving5 or how to port code
from Matlab©6

During the development, the end users are also advised to follow the toolbox skeleton7 to
easily test their developments and share the model as a toolbox.

D5.3 End-user guidelines for model-based design ARGO

11

Version: v1.00 / FINAL Public (PU)

3.2 Model verification

After the initial design phase and during iterative development, the toolset can be used to
check model correctness and compliance for code generation. The tool flow allows multiple
verification at various transformation stages; each stage have a well-defined inputs and
outputs feature sets checked during code generation. Issue found by a specific
transformation stage could be linked back to the initial model implementation thanks to
traceability links.

Figure 4: subsystem with a trash block

// 2aa0f3e1:15755feef64:-50b4

// scs_m(list("objs",1,"model","rpar","objs",33))

// PhysicalModel/ControlSubsystem

// multiplex

tmp155 = [LOOPBACK_CONTROL ; DISPLAY_ENABLE];

Figure 5: Scilab translated code

ControlSubsystem.sci(241:5-11): W00053 Warning: Variable tmp155 not used.

 tmp155 = [LOOPBACK_CONTROL ; DISPLAY_ENABLE];

  ~~~~~~ 

Figure 6: Scilab to C frontend warning for dummy assignment 

Usual software verification such as unused variables are performed during the Scilab to C 
translation and can be considered as design flaws. For example, Figure 4, Figure 5, Figure 6 
demonstrate the top-down toolset execution from an Xcos model to generated Scilab code 
and then to an “unused variable” warning emitted by the Scilab to C frontend. 

The conversion from Scilab to C also performs an aggressive range analysis that can trigger 
warnings or partial code generation when the input model (either designed by hand or 
produced from Xcos) contains invalid parameters or constructs. Another example is to link 
together interpolation blocks with incompatible value ranges. This construct might not be 
detected on model design as Xcos and Scilab generated code will still simulate correctly. 
However, the Scilab to C frontend will display a warning as it is considered correctly as dead 
code. 

Furthermore, models unit-testing facilities are also distributed with the toolset. Within Scilab 
or the Emmtrix software package the end-user can implement unit tests to check numerical 
correctness of the high-level model. During model design, independent subsystems or 
functions can then be verified. 

Model validation, e.g. model accuracy evaluation, can also be performed using the toolset, 
however it is left to the user to develop validation methods corresponding to its design and 
practices. From our experience, the ARGO toolset is flexible enough to match either Xcos 



D5.3 End-user guidelines for model-based design ARGO 

 

 

12 

 

Version: v1.00 / FINAL Public (PU) 

 

subsystem validation as in the DLR EGPWS use-case, either Scilab gateway stub validation 
as used in the IIS POLKA use-case. 

3.3 Software in the loop (SIL) 

Quoting ACM SIG on SImulation and Modeling8 : 

Software-in-the-loop can be viewed as Simulation-based Software 
Evaluation. A software system can be executed under simulated input 
conditions for the purpose of evaluating how well the software system 
functions under such input conditions. 

In the context of the ARGO project, Software in the loop could be performed to ensure model 
consistency across the different transformation performed by the tools. Each tool, composing 
the toolset, has well-defined inputs, outputs and computation function that can be used to re-
inject the tool output back to the user-defined main model. 

 

Figure 7: ARGO tools in the loop  

Depending on the user needs, the toolset offer a wide range of capabilities to reinject 
generated computation functions back to the original model as shown in Figure 7. For 
example:  

1. Starting from an Xcos model, the generated Scilab code can be re-injected back as a 
Scilab function block. 

2. From a Scilab model, the generated sequential C code can be compiled using Scilab 
facilities and called as a host native implementation. 

3. Using the same Xcos model as in 1., the generated (sequential or parallel) C code 
can be introduced back to the model as a C native function block. 

In a more advanced topic, platform specific parallelization support might also be checked by 
reinjecting back not only the generated sequential code but also multiple parallelized 
versions or, even better a hardware simulation to ensure correctness of the final behaviour.  

Starting from Software in the loop, the end-user could also want to go deeper using in-the-
loop validation (with Processor in the loop, Hardware in the loop, complex physical models in 

Xcos design

•Initial

•In the loop

Scilab code

•Sequential

•With custom codes

C code

•Sequential C

•Parallel C

•Specialized parallel C



D5.3 End-user guidelines for model-based design ARGO 

 

 

13 

 

Version: v1.00 / FINAL Public (PU) 

 

the loop). Thanks to Scilab features and to the large user-contributed toolboxes, this 
advanced model checking can be performed with ease and have already been demonstrated 
by IIS by accessing a remote hardware. 



D5.3 End-user guidelines for model-based design ARGO 

 

 

14 

 

Version: v1.00 / FINAL Public (PU) 

 

4. Development iterations 

During the first part of the ARGO project, end-users constructed models based on the 
existing documentation. As Scilab/Xcos is a previously existing software, the end-users 
started early and quickly by defining their models with support from software providers. A 
dedicated workshop also helped them to review their initial design. 

To ease complete code generation, partial models should regularly be used as inputs to the 
toolset to perform model verification. The toolset can then be used as a model-checking tool 
to ensure both toolset functional coverage and subsystems (or sub-functions) unit testing. 
Such an iterative approach successfully led to DLR GPWS and IIS POLKA C code 
generation. 

As the toolset is currently top-down, the use cases design can be decomposed to a top-down 
transformation steps that should be drived by the end-user to correctly emit parallel C code 
for the chosen target architecture. 

4.1 End-user application initial validation 

Depending on the chosen modelling language used for the design, the initial validation 
differs: 

 For a Scilab model, the validation should be performed through classical software 
testing. 

 For an Xcos model, the validation should be performed by simulating the designed 
sub-system in a representative global system. 

4.1.1 Scilab-based models validation 

A Scilab test file is an executable script file with specific attributes as comments to setup the 
test environment correctly. Each test is executed inside its own test environment and 
dedicated Scilab runtime. To ease user checking, the test can be launched directly within 

Scilab using the test_run() utility function. 

A notable point for validating Scilab based models is that the Scilab language is a dynamic-
typed language which resolves functions at runtime and can locally re-define functions as 
showcased in Figure 8: Scilab function re-definition. This function redefinition allows unit-
testing using stubs or more advanced mocking pattern. 

function foo() 

    bar(1, 2) 

endfunction 

 

bar = disp; 

foo() 

 

clear bar; 

bar = sum; 

foo() 

Figure 8: Scilab function re-definition 



D5.3 End-user guidelines for model-based design ARGO 

 

 

15 

 

Version: v1.00 / FINAL Public (PU) 

 

The unit-testing of software components has already been vastly studied on the Computer 
Science literature9 and is not covered in this document. Most of the described technics in the 
literature can also be applied to the Scilab language. 

4.1.2 Xcos-based model validation 

Xcos model validation is performed through the usual sub-system decomposition and the 
implementation of a representative external environment. The external environment is 
usually also defined using Xcos blocks but is not limited to the block subset supported on 
code generation. 

 

Figure 9: Xcos model for validation 

 

// load xcos 

loadXcosLibs(); 

// import the schema 

importXcosDiagram(path + "/behaviors.zcos"); 

 

// generate some code for the superblock on TMPDIR 

ok = xcg_codegenerator(scs_m, TMPDIR, "computational_behavior"); 

 

// execute and display the generated code 

exec(TMPDIR + filesep() + name + ".sci", 1); 

 

// convert the code to C using the 2nd frontend on TMPDIR 



D5.3 End-user guidelines for model-based design ARGO 

 

 

16 

 

Version: v1.00 / FINAL Public (PU) 

 

cd(TMPDIR) 

emx_codegen(name + "_scenario.sce"); 

Figure 10: Xcos model test 

The Figure 10: Xcos model test can also be extended to compile and link the generated code 
into Scilab and perform a Software in the loop (SIL) tests within the same graphical 
environment used during the design. Numerical correctness could then be ensured between 
the design model and generated code. 

Note that in the first revision of the toolset, the capability to reinject the generated code back 
to the end-user model automatically as described in Software in the loop (SIL) is not 
available. Arguments passing and compilation should be done by hand for representative 
models. The arguments checking and compiler script generation is planned in future revision 
of the toolset within the integrated toolchain. 

After this Xcos models can use Scilab variables to parametrize any block, the overall schema 
is usually setup to have one simulation but can be configured to simulate the same schema 
in a different context, with different input test vectors thus covering more executions in a 
single test. 

4.2 Software in the Loop validation 

Using the ARGO toolset, the end-user can validate the functional correctness of the 
generated code on different steps. Individual steps could be used to ensure generated 
versus model functional match and they could also be composed from model to targeted 
generated code from end-to-end functional validation. 

The SIL validation of each transformation step should be performed inside the input model to 
avoid misevaluation due to executing the generated code inside a different execution 
environment (or software). For example, to validate: 

1. generated Scilab code from an Xcos model, the Scilab code should be reinjected 
back into the Xcos model, 

2. C code from Scilab, the C code should be compiled, linked and executed within 
Scilab, 

3. Generated C code from (intermediate Scilab code from) Xcos model, the C code 
should be compiled, linked and executed as an Xcos block. 

Currently the integrated toolchain runs top-down; e.g. from the model to the generated C 
code. The in-the-loop validation should be performed manually by the end-users. An 
automatic “stub” generation is planned to ease SIL implementation back to the input model 
(for each intermediate representation). 

Each intermediate representation composing the toolset is described below as INPUTS and 
OUTPUTS of each tool composing the toolset. These intermediate representations can then 
be composed to perform one-step or multi-step model validation. Each “quoted” asset below 
is supposed to be opaque to the end-users and is only generated to ease tool flow iterations. 

4.2.1 Xcos to Scilab 

INPUTS: Xcos user-defined model, Scilab user-defined functions, Scilab user-defined 
scripts. 



D5.3 End-user guidelines for model-based design ARGO 

 

 

17 

 

Version: v1.00 / FINAL Public (PU) 

 

OUTPUTS: Scilab user-defined functions, Scilab generated functions, Scilab “scenario” 
script. 

 

my_sum_parameters = [1 ; 1 ] 

Figure 11: Xcos frontend input model for SIL 

function [y1, y2]=computational_behavior(t, u1, u2, u3) 

    //EMX?: emx_func_file('computational_behavior.c') 

     

     

    // update outputs  

 

    // 7b556cf2:1571d232759:-7da2 

    // scs_m(list("objs",3,"model","rpar","objs",6)) 

    // behaviors/computational_behavior 

    // sum 

    tmp16 = u1 + u2; 

 

    // 7b556cf2:1571d232759:-7da4 

    // scs_m(list("objs",3,"model","rpar","objs",19)) 

    // behaviors/computational_behavior 

    // xcg_output_sim 

    y2 = u3; 

 

    // 7b556cf2:1571d232759:-7da6 

    // scs_m(list("objs",3,"model","rpar","objs",17)) 

    // behaviors/computational_behavior 

    // xcg_output_sim 

    y1 = tmp16; 

endfunction 

Figure 12: Xcos frontend output for SIL 

Xcos have some blocks to use Scilab (using scifunc_block_m) or C code (using 

c_block) as a simulation function, re-injecting the generated Scilab code (or any generated 

C code) is simple and is planned to be done automatically in future revision of the toolset. 
More complex software in the loop implementations, such as remote execution through 
Ethernet / UDP network, have also been demonstrated successfully on the DLR use-case. 

Using Xcos as an input environment also opens the door to more complex modelling of the 
outer environment. Representative plane dynamics or high-speed ground variation (multi-



D5.3 End-user guidelines for model-based design ARGO 

 

 

18 

 

Version: v1.00 / FINAL Public (PU) 

 

clocked) can then be implemented using the full Xcos semantics on the model; still using the 
reduced semantic on the sub-system. 

4.2.2 Scilab to sequential C  

INPUTS: Scilab user-defined functions, Scilab generated functions, Scilab “scenario” script. 

OUTPUTS: C generated functions, HTML report, C “main” code. 

 

// initial output values  

y1 = zeros(1, 1); 

y2 = zeros(1, 1); 

 

// initial input values  

u1 = zeros(1, 1); 

u2 = zeros(1, 1); 

u3 = zeros(1, 1); 

 

// initialize all the blocks  

 

// simulation loop 

for t=1:1:30 

    // generating random inputs 

    u1 = 1.7976931348623157000000000E+308 * rand(1, 1) - 

8.9884656743115785000000000E+307; 

    u2 = 1.7976931348623157000000000E+308 * rand(1, 1) - 

8.9884656743115785000000000E+307; 

    u3 = 1.7976931348623157000000000E+308 * rand(1, 1) - 

8.9884656743115785000000000E+307; 

     

    [y1, y2] = computational_behavior(t, u1, u2, u3); 

     

    // print out values 

    disp(y1); 

    disp(y2); 

end 

 

function [y1, y2]=computational_behavior(t, u1, u2, u3) 

    //EMX?: emx_func_file('computational_behavior.c') 

     

     

    // update outputs  

 

    // 7b556cf2:1571d232759:-7da2 

    // scs_m(list("objs",3,"model","rpar","objs",6)) 

    // behaviors/computational_behavior 

    // sum 

    tmp16 = u1 + u2; 

 

    // 7b556cf2:1571d232759:-7da4 

    // scs_m(list("objs",3,"model","rpar","objs",19)) 

    // behaviors/computational_behavior 

    // xcg_output_sim 

    y2 = u3; 



D5.3 End-user guidelines for model-based design ARGO 

 

 

19 

 

Version: v1.00 / FINAL Public (PU) 

 

 

    // 7b556cf2:1571d232759:-7da6 

    // scs_m(list("objs",3,"model","rpar","objs",17)) 

    // behaviors/computational_behavior 

    // xcg_output_sim 

    y1 = tmp16; 

endfunction 

Figure 13: Scilab frontend input for SIL 

void computational_behavior(double * const y1_data, double * const y2_data, 

double u1_data, double u2_data, double u3_data) { 

  double tmp16_data;  

   

  // computational_behavior.sci(2:13-56):  

emx_func_file('computational_behavior.c') 

  // computational_behavior.sci(11:5-21):  tmp16 = u1 + u2; 

   

  tmp16_data = u1_data + u2_data;  

   

  // computational_behavior.sci(17:5-13):  y2 = u3; 

   

  *y2_data = u3_data;  

   

  // computational_behavior.sci(23:5-16):  y1 = tmp16; 

   

  *y1_data = tmp16_data;  

} 

 

Figure 14: Scilab frontend output for SIL 

Scilab can dynamically compile, link and execute C code using link and call functions to 

re-inject the generated C code back to Scilab. The generated code can then be stressed 
using all Scilab environment features; including graphical features, test vector generation or 
reporting. 

As an added feature, the Scilab to C tool also comes with a comprehensive tests battery 
which can be used to implement unit-tests or non-regression tests for code snippets. 



D5.3 End-user guidelines for model-based design ARGO 

 

 

20 

 

Version: v1.00 / FINAL Public (PU) 

 

Numerical correctness of functions can then be tested out of the main Scilab environment in 
an automated way. 



D5.3 End-user guidelines for model-based design ARGO 

 

 

21 

 

Version: v1.00 / FINAL Public (PU) 

 

5. Conclusion 

In this document, we described the ARGO toolset model-based design guidelines to create 
models and generate sequential C from it. The frontend part of the ARGO toolset provides 
facilities to validate a design and rely on code-generation to actually implement it. Two use-
cases have been used in the context of the project to validate the approach and the usability 
of the tools. 

Thanks to the holistic approach of the toolset, the use-cases will be used as input for 
automatic WCET-aware parallelisation in the next months and a second iteration of the 
guidelines will describe how to tune the input models to better fit the end-user requirements. 



D5.3 End-user guidelines for model-based design ARGO 

 

 

22 

 

Version: v1.00 / FINAL Public (PU) 

 

Glossary of Terms 

ADL Architecture Description Language 

AMBA Advanced Microcontroller Bus Architecture 

AMP Asymmetric MultiProcessing 

API Application Programming Interface 

ASG Abstract Syntax Graph 

AST Abstract Syntax Tree 

AVX Advanced Vector Extensions 

BUG Bottom-Up-Greedy 

CDFG Control and Data Flow Graph 

CFG Control Flow Graph 

CIL Common Intermediate Language 

CPU Central Processing Unit 

CRISP Cutting edge Reconfigurable ICs for Stream Processing 

DSL Domain-Specific Language 

DTSE  Data Transfer and Storage Methodology 

GCC GNU Compiler Collection 

GPP General Purpose Processor 

GSP General Streaming Processor 

DSP Digital Signal Processor 

ELF Executable and Linking Format  

EULA End User Licence Agreement 

GPU Graphics Processing Unit 

GPGPU General Purpose Graphics Processing Unit 

HDL Hardware Description Language 

HIR High Level Intermediate Representation 



D5.3 End-user guidelines for model-based design ARGO 

 

 

23 

 

Version: v1.00 / FINAL Public (PU) 

 

HLS High Level Synthesis 

HPC High Performance Computing 

IMS Integrated Modulo Scheduling 

IR Intermediate Representation 

ISA Instruction set architecture 

JIT Just In Time 

LIR Low Level Intermediate Representation 

LISA Language for Instruction Set Architecture 

LISP Is a family of computer programming languages 

LLVM Low-Level Virtual Machine 

LTI Linear Time-Invariant 

MCA Multicore Association 

MMX Multi Media Extension 

MPSoC Multiprocessor System on Chip 

MPPB Massively Parallel Processor Breadboarding 

NLP Nested Loop Programs 

NP Non-Polynomial 

NoC Network on Chip 

NUMA Non-Uniform Memory Access 

OpenCL Open Computing Language 

PCCA Partial Component Cluster Assignment 

PIS Pragmatic Integrated Scheduling 

PIP Parametric Integer Programming 

PTX Parallel Thread eXecution 

RHOP Region-based Hierarchical Operation Partitioning 

RTL Register Transfer Level 

RFD Reconfigurable Fabric Device 



D5.3 End-user guidelines for model-based design ARGO 

 

 

24 

 

Version: v1.00 / FINAL Public (PU) 

 

SCoP Static Control Part 

SIMD Single Instruction Multiple Data 

SMP Symmetric MultiProcessing 

SoC System-on-Chip 

SSA Static Single Assignment 

SWP Sub-Word Parallelism 

UAS Unified Assign and Schedule 

UMA Uniform Memory Access 

VHDL Very high speed integrated circuits Hardware Description Language 

VLIW Very Long Instruction Word 

 

 

 



D5.3 End-user guidelines for model-based design ARGO 

 

 

25 

 

Version: v1.00 / FINAL Public (PU) 

 

References 

                                                

1 https://www.scilab.org a Free and Open-Source Software for numerical computation 

2 http://www.scilab.org/resources/documentation/tutorials  

3 Emmtrix ECG Reference Guide, ECGReferenceGuide.pdf 

4 Campbell, S. L., Chancelier, J. P., & Nikoukhah, R. (2010). Modeling and Simulation in 
SCILAB. Modeling and Simulation in Scilab/Scicos with ScicosLab 4.4, 73-106. 

5 https://www.d-booker.fr/scilab-book1/325-scilab-fundamentals.html  

6 http://www.scilab.org/resources/documentation/community  

7 https://wiki.scilab.org/howto/Create%20a%20toolbox  

8 http://www.acm-sigsim-mskr.org/MSAreas/InTheLoop/softwareInTheLoop.htm  

9 https://en.wikipedia.org/wiki/Unit_testing#Notes 

 

https://www.scilab.org/
http://www.scilab.org/resources/documentation/tutorials
https://www.d-booker.fr/scilab-book1/325-scilab-fundamentals.html
http://www.scilab.org/resources/documentation/community
https://wiki.scilab.org/howto/Create%20a%20toolbox
http://www.acm-sigsim-mskr.org/MSAreas/InTheLoop/softwareInTheLoop.htm
https://en.wikipedia.org/wiki/Unit_testing#Notes

