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INTRODUCTION TO CONTROL SYSTEMS IN SCILAB 

In this Scilab tutorial, we introduce readers to the Control System Toolbox that is 
available in Scilab/Xcos and known as CACSD. This first tutorial is dedicated to 
"Linear Time Invariant" (LTI) systems and their representations in Scilab.  

Level 
     

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. 
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Step 1: LTI systems 

Linear Time Invariant (LTI) systems are a particular class of systems 

characterized by the following features: 

 Linearity: which means that there is a linear relation between the 

input and the output of the system. For example, if we scale and 

sum all the input (linear combination) then the output are scaled 

and summed in the same manner. More formally, denoting with 

 a generic input and with  a generic output we have: 

 

 Time invariance: which mean that the system is invariant for 

time translations. Hence, the output  produced by the input 

 is identical to the output  produced by the input 

 which is shifted by the quantity . 

 

Thanks to these properties, in the time domain, we have that any LTI 

system can be characterized entirely by a single function which is the 

response to the system’s impulse. The system’s output is the 

convolution of the input with the system's impulse response. 

In the frequency domain, the system is characterized by the transfer 

function which is the Laplace transform of the system’s impulse 

response. 

 

The same results are true for discrete time linear shift-invariant 

systems which signals are discrete-time samples. 

 

 

 



 

Control Systems in Scilab www.openeering.com page 3/17 

Step 2: LTI representations 

LTI systems can be classified into the following two major groups: 

 SISO: Single Input Single Output; 

 MIMO: Multiple Input Multiple Output. 

 

LTI systems have several representation forms: 

 Set of differential equations in the state space representation; 

 Transfer function representation; 

 Zero-pole representation. 

 

 

 
A typical representation of a system with its input and output ports and 

its internal state 

Step 3: RLC example 

This RLC example is used to compare all the LTI representations. The 

example refers to a RLC low passive filter, where the input is 

represented by the voltage drop "V_in" while the output "V_out" is 

voltage across the resistor. 

In our examples we choose: 

 Input signal: ; 

 Resistor: ; 

 Inductor:  ; 

 Capacitor: . 

 

 

 

 
(Example scheme) 
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Step 4: Analytical solution of the RLC example 

The relation between the input and the output of the system is: 

 

On the right we report a plot of the solution for the following values of the 

constants: 

  [V]; 

  [Hz]; 

  [Ohm]; 

  [H]; 

  [F]; 

with initial conditions: . 

 

 

 
 

// Problem data 

A = 1.0; f = 1e+4; 

R = 10;      // Resistor  [Ohm] 

L = 1e-3;    // Inductor  [H] 

C = 1e-6;    // Capacitor [F] 

 

// Problem  function 

function zdot=RLCsystem(t, y) 

    z1 = y(1); z2 = y(2); 

    // Compute input 

    Vin = A*sin(2*%pi*f*t); 

    zdot(1) = z2; zdot(2) = (Vin - z1 - L*z2/R) /(L*C); 

endfunction 

 

// Simulation time [1 ms] 

t = linspace(0,1e-3,1001); 

 

// Initial conditions and solving the ode system 

y0 = [0;0]; t0 = t(1); 

y = ode(y0,t0,t,RLCsystem); 

 

// Plotting results 

Vin = A*sin(2*%pi*f*t)'; 

scf(1); clf(1); plot(t,[Vin,y(1,:)']); legend(["Vin";"Vout"]); 

(Numerical solution code) 
 

 
(Simulation results) 
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Step 5: Xcos diagram of the RLC circuit 

There can be many Xcos block formulation for the RLC circuit but the one 

which allows fast and accurate results is the one that uses only 

integration blocks instead of derivate blocks. 

The idea is to start assembling the differential part of the diagram as: 

 

  and    

and then to complete the scheme taking into consideration the relations 

(Kirchhoff’s laws)  and  with . 

At the end, we add the model for  as follows: 

 

 

The simulation results are stored in the Scilab mlist variable "results" 

and plotted using the command 

 

// Plotting data 

plot(results.time,results.values) 

 

 

 

 
(Simulation diagram) 

 
 
 

 
(Simulation results) 
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Step 6: Another Xcos diagram of the RLC circuit 

On the right we report another Xcos representation of the system which is 

obtained starting from the system differential equation: 

 

As previously done, the scheme is obtained starting from 

 

and using the relation 

 

which relates the second derivative of the  to the other variables. 

 

 

 
 

 
(Simulation diagram) 

 
 
 

 
(Simulation results) 
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Step 7: State space representation 

The state space representation of any LTI system can be stated as 

follows: 

 

where  is the state vector (a collection of all internal variables that are 

used to describe the dynamic of the system) of dimension ,  is the 

output vector of dimension  associated to observation and  is the input 

vector of dimension . 

Here, the first equation represents the state updating equations while the 

second one relates the system output to the state variables. 

In many engineering problem the matrix  is the null matrix, and hence 

the output equation reduces to , which is a weight combination of 

the state variables. 

 

A space-state representation in term of block is reported on the right. 

Note that the representation requires the choice of the state variable. This 

choice is not trivial since there are many possibilities. The number of state 

variables is generally equal to the order of the system’s differential 

equations. In electrical circuit, a typical choice consists of picking all 

variables associated to differential elements (capacitor and inductor). 

 

 
 
 
 
 

 
State space representation 

 
 
 
 
 
 

 
Block diagram representation of the state space equations 
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Step 8: State space representation of the RLC circuit 

In order to write the space state representation of the RLC circuit we 

perform the following steps: 

 Choose the modeling variable: Here we use , 

 and ; 

 Write the state update equation in the form ; 

For the current in the inductor we have: 

 

For the voltage across the capacitor we have: 

 

 

 Write the observer equation in the form . 

The output voltage  is equal to the voltage of the capacitor 

. Hence the equation can be written as 

 

The diagram representation is reported on the right using the Xcos block: 

 

which can directly manage the matrices "A", "B", "C" and "D". 

 
 

 
(Simulation diagram) 

 

 
(Input mask) 

 

 
(Simulation results) 
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Step 9: Transfer function representation 

In a LTI SISO system, a transfer function is a mathematical relation 

between the input and the output in the Laplace domain considering its 

initial conditions and equilibrium point to be zero. 

 

For example, starting from the differential equation of the RLC example, 

 

the transfer function is obtained as follows: 

 

that is: 

 

 

In the case of MIMO systems we don’t have a single polynomial transfer 

function but a matrix of transfer functions where each entry is the transfer 

function relationship between each individual input and each individual 

output. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Examples of Laplace transformations: 
 

Time domain Laplace domain 
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Step 10: Transfer function representation of the RLC 
circuit 

The diagram representation is reported on the right. Here we use the 

Xcos block: 

 

which the user can specify the numerator and denominator of the transfer 

functions in term of the variable "s". 

The transfer function is 

 

and, hence, we have: 

  

  

 

 

 

 

 

 
 

 
(Simulation diagram) 

 

 
(Input mask) 

 
 

 
(Simulation results) 
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Step 11: Zero-pole representation and example 

Another possible representation is obtained by the use of the partial 

fraction decomposition reducing the transfer function 

 

into a function of the form: 

 

where  is the gain constant and  and  are, respectively, the zeros of 

the numerator and poles of the denominator of the transfer function. 

This representation has the advantage to explicit the zeros and poles of 

the transfer function and so the performance of the dynamic system. 

If we want to specify the transfer function in term of this representation in 

Xcos, we can do that using the block 

 

and specifying the numerator and denominator. 

In our case, we have 

 

with 

 

 
 

 
(Simulation diagram) 

 

 
(Input mask) 

 
 

 
(Simulation results) 
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Step 12: Converting between representations 

In the following steps we will see how to change representation in Scilab 

in an easy way. Before that, it is necessary to review some notes about 

polynomial representation in Scilab. 

 

A polynomial of degree is a function of the form: 

 

Note that in Scilab the order of polynomial coefficient is reversed from that 

of MATLAB
®
 or Octave

®
. 

 

The main Scilab commands for managing polynomials are: 

 %s: A Scilab variable used to define polynomials; 

 poly: to create a polynomial starting from its roots or its 

coefficients; 

 coeff: to extract the coefficient of the polynomial; 

 horner: to evaluate a polynomial; 

 derivat: to compute the derivate of a polynomial; 

 roots: to compute the zeros of the polynomial; 

 +, -, *: standard polynomial operations; 

 pdiv: polynomial division; 

 /: generate a rational polynomial i.e. the division between two 

polynomials; 

 inv or invr: inversion of (rational) matrix. 

 
 

// Create a polynomial by its roots 

p = poly([1 -2],'s') 

 

// Create a polynomial by its coefficient 

p = poly([-2 1 1],'s','c') 

 

// Create a polynomial by its coefficient 

// Octave/MATLAB(R) style 

pcoeff = [1 1 -2]; 

p = poly(pcoeff($:-1:1),'s','c') 

pcoeffs = coeff(p) 

 

// Create a polynomial using the %s variable 

s = %s; 

p = - 2 + s + s^2 

 

// Another way to create the polynomial 

p = (s-1)*(s+2) 

 

// Evaluate a polynomial 

res = horner(p,1.0) 

 

// Some operation on polynomial, sum, product and find zeros 

q = p+2 

r = p*q 

rzer = roots(r) 

 

// Symbolic substitution and check 

pp = horner(q,p) 

res = pp -p-p^2 

typeof(res) 

 

// Standard polynomial division 

[Q,R] = pdiv(p,q) 

 

// Rational polynomial 

prat = p/q 

typeof(prat) 

prat.num 

prat.den 

 

// matrix polynomial and its inversion 

r = [1 , 1/s; 0 1] 

rinv = inv(r) 
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Step 13: Converting between representations 

The state-space representation of our example is: 

 

 

while the transfer function is  

 

 

In Scilab it is possible to move from the state-space representation to the 

transfer function using the command ss2tf. The vice versa is possible 

using the command tf2ss. 

In the reported code (right), we use the "tf2ss" function to go back to the 

previous state but we do not find the original state-space representation. 

This is due to the fact that the state-space representation is not unique 

and depends on the adopted change of variables. 

 

The Scilab command ss2ss transforms the system through the use of a 

change matrix , while the command canon generates a transformation 

of the system such that the matrix "A" is on the Jordan form. 

 

The zeros and the poles of the transfer function can be display using the 

command trfmod. 

 
 

// RLC low passive filter data 

mR = 10;        // Resistor [Ohm] 

mL = 1e-3;        // Inductor [H] 

mC = 1e-6;        // Capacitor [F] 

mRC = mR*mC; 

mf = 1e+4; 

 

// Define system matrix 

A = [0 -1/mL; 1/mC -1/mRC]; 

B = [1/mL; 0]; 

C = [0 1]; 

D = [0]; 

 

// State space 

sl = syslin('c',A,B,C,D) 

h = ss2tf(sl) 

sl1 = tf2ss(h)  

 

// Transformation 

T = [1 0; 1 1]; 

sl2 = ss2ss(sl,T) 

 

// Canonical form 

[Ac,Bc,U,ind]=canon(A,B) 

 

// zero-poles 

[hm]=trfmod(h) 

 
 
 

 
(Output of the command trfmod) 
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Step 14: Time response 

For a LTI system the output can be computed using the formula: 

 

 

In Scilab this can be done using the command csim for continuous 

system while the command dsimul can be used for discrete systems.  

The conversion between continuous and discrete system is done using 

the command dscr specifying the discretization time step. 

 

On the right we report some examples: the transfer function is relative to 

the RLC example. 

 

 

 
 

// the step response (continuous system) 

t = linspace(0,1e-3,101); 

y = csim('step',t,sl); 

scf(1); clf(1); 

plot(t,y); 

 

// the step response (discrete system) 

t = linspace(0,1e-3,101); 

u = ones(1,length(t)); 

dt = t(2)-t(1); 

y = dsimul(dscr(h,dt),u); 

scf(2); clf(2); 

plot(t,y); 

 

// the user define response 

t = linspace(0,1e-3,1001); 

u = sin(2*%pi*mf*t); 

y = csim(u,t,sl); 

scf(3); clf(3); 

plot(t,[y',u']); 
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Step 15: Frequency domain response 

The Frequency Response is the relation between input and output in the 

complex domain. This is obtained from the transfer function, by 

replacing  with . 

 

The two main charts are: 

 Bode diagram: In Scilab this can be done using the command 

bode; 

 And Nyquist diagram: In Scilab this can be done using the 

command nyquist. 

 

 

 
 

// bode 

scf(4); clf(4); 

bode(h,1e+1,1e+6); 

 

// Nyquist 

scf(5); clf(5); 

nyquist(sl,1e+1,1e+6); 

 
 

 
(Bode diagram) 

 
 

 
(Nyquist diagram) 
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Step 16: Exercise 

Study in term of time and frequency responses of the following RC band-

pass filter: 

 

Use the following values for the simulations: 

  [Ohm]; 

  [F]; 

  [Ohm]; 

  [F]. 

Hints: The transfer function is: 

 

The transfer function can be defined using the command syslin. 

 

 
 

 
 

(step response) 

 
 

(Bode diagram) 

 
 

(Nyquist diagram) 
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Step 17: Concluding remarks and References 

In this tutorial we have presented some modeling approaches in 

Scilab/Xcos using the Control System Toolbox available in Scilab known 

as CACSD. 

  

1. Scilab Web Page: Available: www.scilab.org. 

2. Openeering: www.openeering.com. 

 

Step 18: Software content 

To report bugs or suggest improvements please contact the Openeering 

team. 

www.openeering.com. 

 

Thanks for the bug report: Konrad Kmieciak. 

 

 

 

Thank you for your attention, 

Manolo Venturin 

 

 

 

-------------- 

Main directory 

-------------- 

ex1.sce   : Exercise 1 

numsol.sce  : Numerical solution of RLC example 

poly_example.sce  : Polynomial in Scilab 

RLC_Xcos.xcos  : RLC in standard Xcos 

RLC_Xcos_ABCD.xcos  : RLC in ABCD formulation 

RLC_Xcos_eq.xcos  : Another formulation of RLC in Xcos 

RLC_Xcos_tf.xcos  : RLC in transfer function form. 

RLC_Xcos_zp.xcos  : RLC in zeros-poles form. 

system_analysis.sce  : RLC example system analysis 

license.txt  : The license file 
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