

www.openeering.com

powered by

INTRODUCTION TO CONTROL SYSTEMS IN SCILAB

In this Scilab tutorial, we introduce readers to the Control System Toolbox that is
available in Scilab/Xcos and known as CACSD. This first tutorial is dedicated to
"Linear Time Invariant" (LTI) systems and their representations in Scilab.

Level

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

Control Systems in Scilab www.openeering.com page 2/17

Step 1: LTI systems

Linear Time Invariant (LTI) systems are a particular class of systems

characterized by the following features:

 Linearity: which means that there is a linear relation between the

input and the output of the system. For example, if we scale and

sum all the input (linear combination) then the output are scaled

and summed in the same manner. More formally, denoting with

 a generic input and with a generic output we have:

 Time invariance: which mean that the system is invariant for

time translations. Hence, the output produced by the input

 is identical to the output produced by the input

 which is shifted by the quantity .

Thanks to these properties, in the time domain, we have that any LTI

system can be characterized entirely by a single function which is the

response to the system’s impulse. The system’s output is the

convolution of the input with the system's impulse response.

In the frequency domain, the system is characterized by the transfer

function which is the Laplace transform of the system’s impulse

response.

The same results are true for discrete time linear shift-invariant

systems which signals are discrete-time samples.

Control Systems in Scilab www.openeering.com page 3/17

Step 2: LTI representations

LTI systems can be classified into the following two major groups:

 SISO: Single Input Single Output;

 MIMO: Multiple Input Multiple Output.

LTI systems have several representation forms:

 Set of differential equations in the state space representation;

 Transfer function representation;

 Zero-pole representation.

A typical representation of a system with its input and output ports and

its internal state

Step 3: RLC example

This RLC example is used to compare all the LTI representations. The

example refers to a RLC low passive filter, where the input is

represented by the voltage drop "V_in" while the output "V_out" is

voltage across the resistor.

In our examples we choose:

 Input signal: ;

 Resistor: ;

 Inductor: ;

 Capacitor: .

(Example scheme)

Control Systems in Scilab www.openeering.com page 4/17

Step 4: Analytical solution of the RLC example

The relation between the input and the output of the system is:

On the right we report a plot of the solution for the following values of the

constants:

 [V];

 [Hz];

 [Ohm];

 [H];

 [F];

with initial conditions: .

// Problem data

A = 1.0; f = 1e+4;

R = 10; // Resistor [Ohm]

L = 1e-3; // Inductor [H]

C = 1e-6; // Capacitor [F]

// Problem function

function zdot=RLCsystem(t, y)

 z1 = y(1); z2 = y(2);

 // Compute input

 Vin = A*sin(2*%pi*f*t);

 zdot(1) = z2; zdot(2) = (Vin - z1 - L*z2/R) /(L*C);

endfunction

// Simulation time [1 ms]

t = linspace(0,1e-3,1001);

// Initial conditions and solving the ode system

y0 = [0;0]; t0 = t(1);

y = ode(y0,t0,t,RLCsystem);

// Plotting results

Vin = A*sin(2*%pi*f*t)';

scf(1); clf(1); plot(t,[Vin,y(1,:)']); legend(["Vin";"Vout"]);

(Numerical solution code)

(Simulation results)

Control Systems in Scilab www.openeering.com page 5/17

Step 5: Xcos diagram of the RLC circuit

There can be many Xcos block formulation for the RLC circuit but the one

which allows fast and accurate results is the one that uses only

integration blocks instead of derivate blocks.

The idea is to start assembling the differential part of the diagram as:

 and

and then to complete the scheme taking into consideration the relations

(Kirchhoff’s laws) and with .

At the end, we add the model for as follows:

The simulation results are stored in the Scilab mlist variable "results"

and plotted using the command

// Plotting data

plot(results.time,results.values)

(Simulation diagram)

(Simulation results)

Control Systems in Scilab www.openeering.com page 6/17

Step 6: Another Xcos diagram of the RLC circuit

On the right we report another Xcos representation of the system which is

obtained starting from the system differential equation:

As previously done, the scheme is obtained starting from

and using the relation

which relates the second derivative of the to the other variables.

(Simulation diagram)

(Simulation results)

Control Systems in Scilab www.openeering.com page 7/17

Step 7: State space representation

The state space representation of any LTI system can be stated as

follows:

where is the state vector (a collection of all internal variables that are

used to describe the dynamic of the system) of dimension , is the

output vector of dimension associated to observation and is the input

vector of dimension .

Here, the first equation represents the state updating equations while the

second one relates the system output to the state variables.

In many engineering problem the matrix is the null matrix, and hence

the output equation reduces to , which is a weight combination of

the state variables.

A space-state representation in term of block is reported on the right.

Note that the representation requires the choice of the state variable. This

choice is not trivial since there are many possibilities. The number of state

variables is generally equal to the order of the system’s differential

equations. In electrical circuit, a typical choice consists of picking all

variables associated to differential elements (capacitor and inductor).

State space representation

Block diagram representation of the state space equations

Control Systems in Scilab www.openeering.com page 8/17

Step 8: State space representation of the RLC circuit

In order to write the space state representation of the RLC circuit we

perform the following steps:

 Choose the modeling variable: Here we use ,

 and ;

 Write the state update equation in the form ;

For the current in the inductor we have:

For the voltage across the capacitor we have:

 Write the observer equation in the form .

The output voltage is equal to the voltage of the capacitor

. Hence the equation can be written as

The diagram representation is reported on the right using the Xcos block:

which can directly manage the matrices "A", "B", "C" and "D".

(Simulation diagram)

(Input mask)

(Simulation results)

Control Systems in Scilab www.openeering.com page 9/17

Step 9: Transfer function representation

In a LTI SISO system, a transfer function is a mathematical relation

between the input and the output in the Laplace domain considering its

initial conditions and equilibrium point to be zero.

For example, starting from the differential equation of the RLC example,

the transfer function is obtained as follows:

that is:

In the case of MIMO systems we don’t have a single polynomial transfer

function but a matrix of transfer functions where each entry is the transfer

function relationship between each individual input and each individual

output.

Examples of Laplace transformations:

Time domain Laplace domain

Control Systems in Scilab www.openeering.com page 10/17

Step 10: Transfer function representation of the RLC
circuit

The diagram representation is reported on the right. Here we use the

Xcos block:

which the user can specify the numerator and denominator of the transfer

functions in term of the variable "s".

The transfer function is

and, hence, we have:

(Simulation diagram)

(Input mask)

(Simulation results)

Control Systems in Scilab www.openeering.com page 11/17

Step 11: Zero-pole representation and example

Another possible representation is obtained by the use of the partial

fraction decomposition reducing the transfer function

into a function of the form:

where is the gain constant and and are, respectively, the zeros of

the numerator and poles of the denominator of the transfer function.

This representation has the advantage to explicit the zeros and poles of

the transfer function and so the performance of the dynamic system.

If we want to specify the transfer function in term of this representation in

Xcos, we can do that using the block

and specifying the numerator and denominator.

In our case, we have

with

(Simulation diagram)

(Input mask)

(Simulation results)

Control Systems in Scilab www.openeering.com page 12/17

Step 12: Converting between representations

In the following steps we will see how to change representation in Scilab

in an easy way. Before that, it is necessary to review some notes about

polynomial representation in Scilab.

A polynomial of degree is a function of the form:

Note that in Scilab the order of polynomial coefficient is reversed from that

of MATLAB
®
 or Octave

®
.

The main Scilab commands for managing polynomials are:

 %s: A Scilab variable used to define polynomials;

 poly: to create a polynomial starting from its roots or its

coefficients;

 coeff: to extract the coefficient of the polynomial;

 horner: to evaluate a polynomial;

 derivat: to compute the derivate of a polynomial;

 roots: to compute the zeros of the polynomial;

 +, -, *: standard polynomial operations;

 pdiv: polynomial division;

 /: generate a rational polynomial i.e. the division between two

polynomials;

 inv or invr: inversion of (rational) matrix.

// Create a polynomial by its roots

p = poly([1 -2],'s')

// Create a polynomial by its coefficient

p = poly([-2 1 1],'s','c')

// Create a polynomial by its coefficient

// Octave/MATLAB(R) style

pcoeff = [1 1 -2];

p = poly(pcoeff($:-1:1),'s','c')

pcoeffs = coeff(p)

// Create a polynomial using the %s variable

s = %s;

p = - 2 + s + s^2

// Another way to create the polynomial

p = (s-1)*(s+2)

// Evaluate a polynomial

res = horner(p,1.0)

// Some operation on polynomial, sum, product and find zeros

q = p+2

r = p*q

rzer = roots(r)

// Symbolic substitution and check

pp = horner(q,p)

res = pp -p-p^2

typeof(res)

// Standard polynomial division

[Q,R] = pdiv(p,q)

// Rational polynomial

prat = p/q

typeof(prat)

prat.num

prat.den

// matrix polynomial and its inversion

r = [1 , 1/s; 0 1]

rinv = inv(r)

Control Systems in Scilab www.openeering.com page 13/17

Step 13: Converting between representations

The state-space representation of our example is:

while the transfer function is

In Scilab it is possible to move from the state-space representation to the

transfer function using the command ss2tf. The vice versa is possible

using the command tf2ss.

In the reported code (right), we use the "tf2ss" function to go back to the

previous state but we do not find the original state-space representation.

This is due to the fact that the state-space representation is not unique

and depends on the adopted change of variables.

The Scilab command ss2ss transforms the system through the use of a

change matrix , while the command canon generates a transformation

of the system such that the matrix "A" is on the Jordan form.

The zeros and the poles of the transfer function can be display using the

command trfmod.

// RLC low passive filter data

mR = 10; // Resistor [Ohm]

mL = 1e-3; // Inductor [H]

mC = 1e-6; // Capacitor [F]

mRC = mR*mC;

mf = 1e+4;

// Define system matrix

A = [0 -1/mL; 1/mC -1/mRC];

B = [1/mL; 0];

C = [0 1];

D = [0];

// State space

sl = syslin('c',A,B,C,D)

h = ss2tf(sl)

sl1 = tf2ss(h)

// Transformation

T = [1 0; 1 1];

sl2 = ss2ss(sl,T)

// Canonical form

[Ac,Bc,U,ind]=canon(A,B)

// zero-poles

[hm]=trfmod(h)

(Output of the command trfmod)

Control Systems in Scilab www.openeering.com page 14/17

Step 14: Time response

For a LTI system the output can be computed using the formula:

In Scilab this can be done using the command csim for continuous

system while the command dsimul can be used for discrete systems.

The conversion between continuous and discrete system is done using

the command dscr specifying the discretization time step.

On the right we report some examples: the transfer function is relative to

the RLC example.

// the step response (continuous system)

t = linspace(0,1e-3,101);

y = csim('step',t,sl);

scf(1); clf(1);

plot(t,y);

// the step response (discrete system)

t = linspace(0,1e-3,101);

u = ones(1,length(t));

dt = t(2)-t(1);

y = dsimul(dscr(h,dt),u);

scf(2); clf(2);

plot(t,y);

// the user define response

t = linspace(0,1e-3,1001);

u = sin(2*%pi*mf*t);

y = csim(u,t,sl);

scf(3); clf(3);

plot(t,[y',u']);

Control Systems in Scilab www.openeering.com page 15/17

Step 15: Frequency domain response

The Frequency Response is the relation between input and output in the

complex domain. This is obtained from the transfer function, by

replacing with .

The two main charts are:

 Bode diagram: In Scilab this can be done using the command

bode;

 And Nyquist diagram: In Scilab this can be done using the

command nyquist.

// bode

scf(4); clf(4);

bode(h,1e+1,1e+6);

// Nyquist

scf(5); clf(5);

nyquist(sl,1e+1,1e+6);

(Bode diagram)

(Nyquist diagram)

Control Systems in Scilab www.openeering.com page 16/17

Step 16: Exercise

Study in term of time and frequency responses of the following RC band-

pass filter:

Use the following values for the simulations:

 [Ohm];

 [F];

 [Ohm];

 [F].

Hints: The transfer function is:

The transfer function can be defined using the command syslin.

(step response)

(Bode diagram)

(Nyquist diagram)

Control Systems in Scilab www.openeering.com page 17/17

Step 17: Concluding remarks and References

In this tutorial we have presented some modeling approaches in

Scilab/Xcos using the Control System Toolbox available in Scilab known

as CACSD.

1. Scilab Web Page: Available: www.scilab.org.

2. Openeering: www.openeering.com.

Step 18: Software content

To report bugs or suggest improvements please contact the Openeering

team.

www.openeering.com.

Thanks for the bug report: Konrad Kmieciak.

Thank you for your attention,

Manolo Venturin

Main directory

ex1.sce : Exercise 1

numsol.sce : Numerical solution of RLC example

poly_example.sce : Polynomial in Scilab

RLC_Xcos.xcos : RLC in standard Xcos

RLC_Xcos_ABCD.xcos : RLC in ABCD formulation

RLC_Xcos_eq.xcos : Another formulation of RLC in Xcos

RLC_Xcos_tf.xcos : RLC in transfer function form.

RLC_Xcos_zp.xcos : RLC in zeros-poles form.

system_analysis.sce : RLC example system analysis

license.txt : The license file

http://www.scilab.org/
http://www.openeering.com/
http://www.openeering.com/

