Scilab and Cloud Solutions

for Hybrid Twin[™]

www.esi-group.com

Hybrid Twin[™] for system design & operation optimization

- 1. Model Reduction for optimal system design
- 2. Physics-based simulation
- 3. Simulation enriched by sensor data
- 4. Optimization powered by real-time simulation

 Based on industrial
 energy-optimization use case at SANOFI

SANOFI using ESI Scilab Cloud to optimize energy costs through simulation

Problem

- Inefficient control of HVAC (Heating, Ventilation & Air Conditioning) leads to energy waste
- HVAC = 60 % of energy bill (example: 500k€/year/site)

Objectives

- Save 10M€+ /year in energy bills worldwide
- Energy efficiency at 100+ industrial sites

ESI Scilab Cloud application for:

- System design
- Operation optimization

A few words about Scilab & ESI Scilab Cloud

Copyright © ESI Group, 2017. All rights reserved.

Scilab[®] is competitive with Matlab[®], but **open-source** and **free**

With Xcos, Scilab[®] offers a modular equivalent to Simulink[®] for control systems design & simulation

Scilab[®] has a 1M+ user community worldwide

ESI Scilab Cloud enables the secure cloud deployment of customers' scientific and engineering applications

Developing & Deploying **Hybrid** Twin[™] apps with Scilab

Architecture

www.esi-group.com

Taking Geometry into Account Model Reduction for faster simulation

Optimizing the design of room temperature & humidity control

<u>Objective</u>: design of Heating, Ventilation, Air Conditioning (HVAC) systems to ensure low variation of temperature & humidity across room

Variable elements :

HVAC system type & power Position & direction of ventilation ducts & exhausts

Issue :

Need for high-fidelity requires 3D models or equivalent but the computing power to simulate numerous configurations is very challenging!

3D HVAC model

From full finite-element CFD models to Reduced-Order Models

Reduced-order model to allow design-space exploration

HVAC control optimized by simulation Physics-based simulation

Copyright © ESI Group, 2017. All rights reserved.

HVAC control optimized by simulation Sanofi's application (Opticlim)

Simulates the operation of HVAC systems based on

- Industrial site & HVAC installation properties HVAC set-up & industrial site properties (room size, operation hours,..)
- Weather data (Hourtly temperature & humidity)
- Actual **HVAC Settings** (Temperature, Humidity, Air flow)

Computes energy consumption (kWh) & costs (k€)

• Fan motors

get it righ

- Heat generation
- Cold generation

Sci Scila	Scilab Cloud ×					 Easy user deployment 		
$\epsilon \rightarrow c$ \bullet Sé	Sécurisé https://scilab.cloud/application?app=opticlim&group=sanofi&version=-1					Flexible app upgrade		
Scilab C								
		_	Choix d'une station mét	téo Anagni	÷	<u>±</u>		
		Tests	Number of AHU on s	ite 30	ок			
	Valeurs Résultats de l'	état initial Résultats simulation	Comparaison					
	Nom de bâtiment	SavingsReference	Gestion de bâtiment	Calendrier des arrêts de pr	oduction Calendrier d'occupation de	es locaux		
	Dénomination CTA	Europe	Nouvelle CTA					
	Simulations sauvegardées	targetted	\$					
	Local Energie & régula	Local Energie & régulation CTA Récupération d'énergie						
				Valeurs initiales Vale				
				Tolérance	Tolérance			
	Température de consigne en	occupation (°C)	22	1 21	3			
	Humidité relative de consign	Humidité relative de consigne en occupation (%)		3 55	3	0		
	Température de consigne en	inoccupation (°C)	22	1 21	3			
	Humidité relative de consign	e en inoccupation (%)	55	3 55	3			
	Nombre de personnes préser	ntes pendant les heures ouvrées	2	2				
	CTA do prótucitoment d'air a	CTA de prétraitement d'air neuf?		\$ non	¢	0		
	CTA de pretraitement d'air no							
	Température d'air neuf prétra	aité						

Optic

Opticlim powered by ESI Scilab Cloud

est it right®

Simulation enriched by sensor data Leverage insights from past data

Copyright © ESI Group, 2017. All rights reserved.

Sensors to collect operational HVAC system data Deployment of network of low-cost wireless sensors

est it right®

Learn from sensor data to build data-driven models From data-fitting To machine learning

get it right

Data-driven models used to fine-tune physics-based model

Performance Monitoring

Leverage ESI Mineset (industrial data analytics) to

1) Compare simulation with real operation data

From offline to real-time optimization Smarter control through real-time simulation

Copyright © ESI Group, 2017. All rights reserved.

New trends in Programmable Logic Controllers (PLCs) Connected PLCs for Cloud Computing

get it right

New trends in Programmable Logic Controllers Linux & Windows for Edge Computing

Rockwell Automation

Allen-Bradley • Rockwell Software

From ESI Scilab Cloud application to connected PLCs Industrial IoT applied to HVAC

essi it right®

Find out more

scilab.org/cloud

